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We demonstrate that in the atomic-scale limit the thermal conductance K of the Fermi-Pasta-Ulam �FPU�
model and its variants strongly deviates from the mesoscopic behavior due to the relevance of contact resis-
tance. As a result, atomic chains follow log K=� log T, where the power-law coefficient � is exactly two times
larger than the mesoscopic value. We smoothly interconnect the atomic and mesoscopic limits and demonstrate
that this turnover behavior takes place in other nonlinear FPU-like models. Our results are significant for
nanoscale applications, manifesting an atomic thermal conductance with temperature scaling superior to the
mesoscopic limit.
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The Fermi-Pasta-Ulam �FPU� model �1� and its variants
provide an ideal test bed for addressing fundamental issues
in statistical mechanics such as equipartition of energy, the
onset of chaos in nonlinear dynamical systems, and the va-
lidity of macroscopic laws in low dimensional systems �2�.
In particular, the thermal conductivity of the FPU model has
been extensively investigated, demonstrating a breakdown of
the normal-diffusional Fourier’s law dynamics �3�. The un-
derlying question addressed in these studies has typically
been whether a one-dimensional �1D� chain of oscillators
with a specific force field can demonstrate equilibrium and
dynamical properties characterizing macroscopic objects.
Thus, simulations were mostly carried out using long chains
of 103–104 beads, targeting the mesoscopic-macroscopic
limit.

Nonetheless, in recent years the thermal conduction prop-
erties of nanoscale junctions have been of fundamental and
practical interest �4�. Here, the physical setup includes a
nanoscale object, e.g., a nanotube �5� or an alkane molecule
�6�, coupled to two �or more� thermal contacts. As devices’
size shrinks, an enormously important question is the appli-
cability of the macroscopic dynamical laws at the nanoscale.
Even in the framework of classical mechanics, contact ef-
fects and the constriction geometry may imply on the onset
of new scaling rules. Furthermore, one of the major problems
in molecular electronics is junction heating, limiting the de-
vice stability. Understating heat transport in molecular sys-
tems thus attracts considerable attention both experimentally
�4,6–8� and theoretically �9–13�. Managing thermal transport
across interfaces �14� is also important in microelectronic
devices �4�, biophysical applications �15�, and in thermoelec-
tric energy conversion devices �16�.

Motivated by these challenges we focus here on the
atomic-scale steady-nonequilibrium FPU model and its vari-
ants. As the effect of the contact �interface� and internal non-
linear interactions cannot be trivially separated, a complex-
new dynamics is revealed at different temperature domains
for both weak and strong system-bath interaction strengths.
Specifically, using numerical simulations we demonstrate
that when the contact resistance controls the dynamics; e.g.,
for extremely short chains or at relatively low temperatures
�yet above the harmonic-anharmonic transition�, the conduc-
tance of FPU-type systems follows a K�T� power law,

where �=1 /2 for the �-FPU model. This behavior stands in
a sharp contrast to the mesoscopic �-FPU limit where the
value �=1 /4 is obtained, as expected from the phenomeno-
logical Debye theory. We justify our results within the
effective-phonon theory �17,18� and further interconnect the
atomic and mesoscopic limits, demonstrating a smooth turn-
over of the dynamics with increasing chain size and tempera-
ture.

We consider a 1D lattice of N atoms whose Hamiltonian
reads as

H = �
i=1

N
pi

2

2
+ g2�2V2 + g4�V4,

V2 =
1

2�
i=0

N

�xi+1 − xi�2; V4 =
1

4�
i=0

N

�xi+1 − xi�4. �1�

Here xi is the displacement from the equilibrium position of
the ith particle, x0 and xN+1 are the fixed boundaries, and pi
are the particles’ momenta. In what follows we assume a
homogeneous chain with masses mi=1 and a force constant
�2. � measures the strength of nonlinear interactions, and
gs�s=2,4� are Boolean variables taking the values of 0 or 1.
In what follows we will consider three models: �i� a har-
monic model �H2� with g2=1, g4=0, �ii� a quartic model
�H4� with g2=0, g4=1, and �iii� the �-FPU model �HF� with
g2=1, g4=1. The quartic model is introduced here to facili-
tate identifying the dynamics of the FPU model at high tem-
peratures.

The direct way to determine the thermal conductance K
of a 1D chain is to couple the left and right ends of the
system with two thermal baths at temperatures TL and TR,
respectively �3�. In our simulations we use Langevin thermo-
stats, with the motivation to simulate real experiments on the
nanoscale, where a small molecule connects to macroscopic
solids �6,8�. In such systems contact resistance is an unavoid-
able issue. The chain’s particles obey the following equations
of motion:
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ẍi = −
�H

�xi
− ��Rẋi − FR��i,N − ��Lẋi − FL��i,1. �2�

where �L,R reflects the coupling strength between the system
and the L ,R bath, and the Gaussian thermal white noises
obey the fluctuation-dissipation relation �kB=1�, �FL,R�t��
=0, �FL,R�t�FL,R�0��=2�L,RTL,R��t�. The long-time heat flux
can be calculated between every two sites as the force ex-
erted by the ith particle on the i+1 member, Ji=
−�ẋi�g2�2�xi+1−xi�+g4��xi+1−xi�3�� where the average re-
flects the time and ensemble average, performed after the
system has reached steady state. The thermal conductance is
defined as K= 1

	T�i=1
N−1Ji / �N−1�, where 	T= �TL−TR�→0.

Figure 1 presents the thermal conductance of relatively
short chains with N=2,5 ,10, for the harmonic, quartic, and
the FPU models in the strong friction limit using �=0.1, �
=�L,R=0.6, �=0.0025, and TL=0.8TR. The following obser-
vations can be made: �i� disregarding anharmonic interac-
tions, the conductance does not depend on temperature, �ii�
for N=2 the quartic model shows a power-law dependence,
K�T1/2, �iii� the FPU model smoothly interconnects the har-
monic and quartic results, with a crossover temperature
around 10−2, and �iv� for long chains the power-law coeffi-
cients at low and high temperatures are distinct. The upper
inset �N=10� demonstrates this effect, to be discussed in
more details in Fig. 2. We can explain these results as fol-
lows. For a 1D harmonic chain it can be analytically shown
�19� that the average stationary thermal flux is given by

J =
�2

2�

�1�	T , �3�

where 
�j�= sinh�N−j��
sinh N� and e−�=1+z /2−	z+z2 /4, z=�2 /�2.

In the strong-coupling limit, z→0, and we obtain ��	z,
resulting in 
�1��1 /2 for N=2 and 
�1��1 for N�1.
Thus, the strong-coupling harmonic conductance reduces to

KN=2 =
�2

4�
; KN→
 =

�2

2�
. �4�

In the opposite weak-coupling limit �z→
� we get �� ln z,

�1��1 /z, and K=� /2 irrespective of chain size. These har-
monic expressions essentially reflect the contact contribu-
tion, as the harmonic object perfectly conducts. In the
present case, Eq. �3� predicts the conductance values 0.0041,
0.0064, and 0.0070 for the N=2,5 ,10 chains �respectively�.
Our simulation data perfectly agree with these numbers. At
low temperatures, since the dominant contribution to the
transport comes from the quadratic term, the FPU model
obeys Eq. �3�, alike a pure harmonic system.

We turn next to the low-temperature quartic model. Here
a power-law dynamics is observed with K�T1/2 �N=2�. In
the high-temperature regime �T�10−2� both FPU and quartic
models yield K�T0.4. These observations stand in sharp
contrast to other results observing a T1/4 dependency
�20–22�. Note however that these works were concerned
with the thermal conductivity of periodic or long anharmonic
chains, where contact effects were negligible or nonexisting.
In contrast, in short atomic systems contact resistance plays a
crucial role �3,8,14�. We consider its influence next.

Assuming that the total thermal resistance of an atomic-
scale chain is given by the sum RT=RM +RC, where RM is the
bulk molecular resistance and RC is the contact resistance,
one finds that the total conductance satisfies KT
=KMKC / �KM +KC�, where Kn=1 /Rn; n=T ,M ,C. Since the
molecular resistance increases with size �not necessarily lin-
early�, we can generally assume that for short chains KT
�KC, while for long systems KT�KM. Next we estimate
separately the contact conductance KC and the molecular
contribution KM.

It is well justified that a sort of Virial theorem holds for
nonlinear potentials, resulting in normal-mode spectra which
are pseudoharmonic for both the quartic potential and the
FPU model �17�, with the dispersion relation

�̃k
2 = ��2�k

2. �5�

Here the integer k counts the normal modes, �k
=2 sin�k� /N�, and the renormalization factor satisfies
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FIG. 1. �Color online� Thermal conductance of atomic FPU
chains �circles or dots�, a quartic chain �dashed line�, and an har-
monic chain �full line� as a function of the average temperature T
= �TL+TR� /2. �L=�R=0.6, �2=0.01, and �=0.01 /4. The main plot
displays data for N=2. The lower �upper� panel displays data for
N=5 �N=10�.
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FIG. 2. �Color online� Power-law behavior at low and high tem-
peratures. �L=�R=0.6, �2=0.01, �=0.01 /4, and N=20, an FPU
chain ���, a quartic chain ���. The upper and lower panels zoom
on data in the low and high-temperature limit, respectively.
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� = g2 + g4
2�

�2

�V4�H

�V2�H
. �6�

The average over the potential energy is taken with respect to
either the H2, H4 or the HF Hamiltonian. It is remarkable that
the factor � does not depend on the wave number k. The
above relation is valid for systems at equilibrium. In our
simulations only a small temperature bias is applied; thus we
pose the ansatz that Eq. �5� still holds, and that the equipar-
tition relation, T=��2�k

2�qk
2�T, is valid close to equilibrium,

where averages are taken with respect to the mean tempera-
ture T= �TL+TR� /2. Here qk’s are the normal modes of a 1D
harmonic chain. Our numerical results, validating Eq. �8�
below, justify this conjecture �23�. Calculating the thermal
averages in Eq. �6�, in the high-temperature regime the dy-
namics of the FPU model follows the behavior of the quartic
model, while at low T it coincides with the harmonic dynam-
ics,

� � 
 �

�2T1/2 high T

1 low T .
� �7�

Since for short chains boundary resistance dominates heat
transfer, the conductance follows Eq. �4�, KC���2 /�, cor-
rected by renormalization factor �7�. This leads to the follow-
ing scaling law:

KC � � � �T1/2 high T

T0 low T .

 �8�

This behavior is significant since a macroscopic-
phenomenological theory provides a different scaling law for
the FPU model and its variants: Within the Debye formula
the heat conductivity can be written as �=�kckvk

2�k, where
ck, vk, and �k are the specific heat, phonon velocity, and the
phonon relaxation time, respectively. Based on this expres-
sion, the following relation can be derived �20,21�, �
�	� /�, where � is the same factor as in Eq. �7�, and �
= �V4�H / �g4V4+g2V2�H. In the high-temperature limit this re-
sults in the following proportion, valid for both the quartic
and the FPU models, ��	��T1/4. Assuming that the tem-
perature gradient is linear in our system �besides the contact
drop �22��, see �24��, we retrieve the bulk molecular conduc-
tance

KM � 	� � T1/4. �9�

We thus conclude that KC�T� whereas KM �T�/2. While in
the low-temperature limit and for short chains we expect KC
to dominate the overall conductance, in the opposite limit the
bulk resistance dominates, and eventually the scaling K
�T1/4 emerges.

We present next data for a longer chain of N=20 �see Fig.
2�. Focusing on the quartic model �circles�, it is evident that
the low-T and the high-T power-law coefficients deviate.
Specifically, at low T the quartic model follows K�T0.41

�upper panel� while at high T, K�T0.26 �lower panel�. The
high T values are characteristic for the FPU model as well
���. Furthermore, we can systematically extract the power-
law coefficients as a function of chain size at different tem-

perature ranges, see Fig. 3. While at low T the power-law
behavior is approximately fixed, K�T� with ��0.4–0.5, at
high T a clear transition to the mesoscopic result is obtained
with an exponent ��0.25 for N�20 at T�1. For conve-
nience the slopes were estimated using the quartic-potential
data.

We can further identify the critical temperature Tc where
bulk conductance dominates contact effects. We conjecture
that RT�aT−1/2+bT−1/4, where the first �second� term reflects
the contact �bulk� resistance, and a and b are �N-dependent�
constants. A plot of RTT1/4 vs T−1/4 should thus become flat
above a critical temperature. For N=50, the inset of Fig. 3
demonstrates this turnover at the value 1.1, which translates
into Tc�0.7. We estimate that above this value the phononic
mean-free path is significantly shorter than the molecular
length. The coefficients a and b are the slope of the linear
line and the asymptotic �constant� value, respectively.

The divergence of the bulk conductance from the contact
conductance, given by scaling laws �8� and �9� for the �-FPU
models, should take place in other models of confining po-
tentials. In particular, we study the thermal conductance of
the 2-6 potential, H=HT+g2�2V2+g6�V6, with V6

= 1
6�i=0

N �xi+1−xi�6 and g6 a Boolean variable. Here HT is the
kinetic energy and V2 is the harmonic term, same as in Eq.
�2�. In the high-temperature limit we obtain �17� �

��V6�H / �V2�H=
	�

3��5/6�T
2/3; � is the Gamma function. Short

chains, controlled by the contact resistance, are expected to
follow K���T2/3, beyond the harmonic-anharmonic transi-
tion, while long chains should obey K�	��T1/3. Our nu-
merical simulations have verified this behavior. Similarly,
studying the �-FPU model, we obtained a power-law behav-
ior with �=1 /3 for short chains, contrasting the mesoscopic
�=1 /6 value �21�.

We study next a weakly coupled junction, ���. In this
parameter range �3� predicts that the conductance of both
harmonic and FPU-like systems �at low T� should be con-
stant, independent of temperature and size. Our numerical
simulations, Fig. 4, confirm this expectation, as both models
yield K�� /2=0.025. In the high-temperature limit small
deviations from this value disclose contributions to energy
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FIG. 3. �Color online� Power-law exponents as a function of
chain size for high temperatures, T�1 �dashed line� and low tem-
peratures T�0.01 �full�. Data were obtained from the slope of log-
log plots of conductance vs temperature for the quartic potential,
parameters as in Figs. 1 and 2. Inset: the N=50 data, marking the
dominance of contact resistance for T�0.7.
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transfer beyond the effective-phonon theory �22�. It is also
worth noting the intricate dynamics for N=20. As expected,
with increasing temperature the FPU model nicely interpo-
lates the harmonic to the quartic limit. However, quite inter-
estingly, since the conductance of the anharmonic chain lies
below the harmonic value, the FPU model demonstrates a
decrease of K with increasing T around the harmonic-
anharmonic transition �see the right panel in Fig. 4�.

As a purely classical treatment is adopted here, one may

question the importance of quantum effects, in particular for
short chains at low T. A simple route for generalizing this
study to the quantum regime would involve incorporating
our simulations with quantum thermal baths, accounting for
quantum statistics �25,26�. Nevertheless, quantum effects
should be rudimentary here: the low-temperature dynamics
of the FPU model is dominated by harmonic interactions.
The interesting scaling revealed here is exposed at high tem-
peratures, above the harmonic-anharmonic transition, see
Fig. 1, where quantum effects were shown to be small �25�.

In summary, we presented here results for the temperature
scaling of the conductance of nonlinear chains with confin-
ing potentials. In the atomistic limit contact thermal resis-
tance, controlling the junction conductance results in a dy-
namics significantly distinct from the mesoscopic limit
where bulk conductance dominates. These results are signifi-
cant fundamentally, demonstrating a new atomic limit with
enhanced thermal conductance for the celebrated FPU
model. From the practical point of view our results deliver an
encouraging message for nanoscale applications, manifesting
that the combination of contact effects and nonlinearity could
be beneficial for thermal transport, leading to an enhanced
conductivity in comparison to the macroscopic limit.
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